19 research outputs found

    Plasma Platform to Investigate Error Structure in the Electronic Components

    No full text
    This program was designed to introduce a plasma platform to examine the field programmable gate array (FPGA) of the link boards typically used at the CERN's arge Hadron Collider (LHC). Pulsed plasma systems with accelerating gradient of 1 kV mu text{m} generate high-intensity, high-energy radiation beams. Single-event upset (SEU) is caused by radiation deposition in the FPGA. In FPGA, the SEU probability for 1-MeV protons and 10-keV X-rays are 0.1 and 2 × 10{-9} particle {-1}. The number of SEU induced in the Si by 1-MeV proton irradiation at 0.8-V bias computed from simulation in COMSOL Multiphysics was 1.8 × 10{5}. Although more experimental research is needed to identify the underlying mechanisms, pulsed plasma is perceived as being a smart alternative to investigate the error structure in FPGA. © 1973-2012 IEEE

    Ice Load Measurements on Known Structures Using Image Processing Methods

    No full text
    This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates

    Simulation of dense plasma focus devices to produce N-13 efficiently

    No full text

    Design and management of renewable smart energy systems: an optimization model and italian case study

    No full text
    Smart and distributed energy micro-production is the new pattern for the electric energy supply, joining high service level and sustainability issues. Within such a context, the renewables, i.e. solar photovoltaic (PV), micro-wind, etc., play an increasing role as part of the source mix because of their capillary presence and the decrease of the required initial technology investments. On the contrary, the renewable intermittence is the key weakness to overcome to make a turning point to their final spread. To this purpose, hybrid energy systems join the plus of having renewable modules to the plus of having backup traditional units activated in the case of lack of energy. This study presents and applies to an Italian rural context a linear programming model to best design and manage a local off-grid renewable smart energy system. The power system may include PV and micro-wind technologies together with a battery bank and diesel generator as the backup system. Starting from the expected average load profile, the environmental conditions and the technical features of the energy modules, the model selects the most suitable energy sources, optimizes the power rates of each unit and manages the energy flows within the system. The final goal to achieve is to minimize the levelized cost of the produced electricity (LCOE) making such a system competitive respect to fully fossil fuel based energy systems. The aforementioned case study exemplifies the model application focusing on a remote scientific center requiring electric energy for its daily research activities. The area where the center is located is badly connected to the national grid and, actually, a fossil fuel generator is used, only, to provide electricity. An as-is vs. to-be differential analysis assesses the effect of introducing a dedicated renewable smart energy system finding its economic feasibility over a 15 year lifetime. Evidences show the convenience of exploiting the solar source, while little convenience is for micro-wind installation because of low available wind power and the increasing system complexity. Globally, the LCOE is close to 0.14 €/kWh making competitive the hybrid energy solution, close to the evident environmental benefit
    corecore